高雄市生物科技發展協會|http://www.khba.org.tw
會員登入
記住帳號 自動登入
會員名錄
各式辦法
下載專區
留言板
您目前的位置:首頁 / 活動與新訊
What We Learned About COVID-19 in 2021
活動日期:2022.01.11
2022.01.11  

As Omicron induces a sense of deja vu at the close of the year, we look back at a few key ways in which our understanding has moved forward.

Shawna Williams Dec 16, 2021

https://www.the-scientist.com/news-opinion/what-we-learned-about-covid-19-in-2021-69532

Many iterations

In a year that began with the Alpha and Beta variants (then known as B.1.1.7 and B.1.351, or the “UK variant” and “South African variant”) dominating headlines, and ends with skyrocketing Omicron case numbers in multiple countries, researchers have learned much about the mutations the variants are accumulating, as well as the changes they wreak in the virus’s epidemiology. Some variants, such as Alpha and later Delta, became dominant, while others, including Mu, looked worrying but never spread widely. For those tracking SARS-CoV-2’s evolution, Omicron threw a curveball, its dozens of mutations indicating it split off from other known variants around the middle of last year. How it managed to evolve so long without detection—for example, in an immunocompromised person with a long-term infection, or in an animal population that caught the virus from people—remains a matter of speculation.  

Vaccines helped, but weren’t a knockout punch

The picture looked rosy for vaccines at the beginning of the year, with reported efficacy rates above 90 percent for Pfizer/BioNTech’s and Moderna’s mRNA jabs, and multiple other versions rolling out around the world. Indeed, while breakthrough infections did occur, COVID-19 hospitalizations tanked among the vaccinated. But many unknowns remained, such as what the vaccines’ effectiveness would be against current and future variants, and whether protection would wane over time, requiring booster shots. While vaccine effectiveness against symptomatic disease turned out to dip only modestly against Delta, preliminary data indicate the story could be bleaker for Omicron—although protection against severe disease appears to remain high.  

As for boosters, the US Food and Drug Administration (FDA) has now authorized them for everyone 16 years or older—a controversial move given that many countries still have a dearth of vaccines, leaving the door open not only to preventable suffering and death, but also to the rise of further variants. 

What treatments might work (and which likely don’t)

The year brought bad news for the use of plasma from people who recovered from COVID-19 to treat those with the disease. The FDA had authorized the use of convalescent plasma for COVID-19 in summer 2020 despite uncertainty around its benefits, and earlier this year, as further studies showed a lack of benefit for most patients, the agency narrowed its emergency use authorization. This month, based on the results of multiple clinical trials, the World Health Organization recommended against use of convalescent plasma for COVID-19. 

More notoriously, many people attempted to treat themselves this year with the antiparasitic medication ivermectin, as controversy over the drug—particularly around the quality of studies that have purported to show its benefits in COVID-19 patients—continued. 

Later in the year, some bright spots emerged in news about new potential treatments—specifically, antiviral pills. In October, Merck announced that its experimental drug lowered the risk of hospitalization with COVID-19 by 50 percent, although it later downgraded that number to about 30 percent. Pfizer’s Paxlovid also emerged as a promising contender, with a recently reported 89 percent efficacy at preventing hospitalization and death. 

A new top dog

One of the most striking insights into SARS-CoV-2 in The Scientist’s coverage this year came, of all places, from a story on how mountain lion behavior changed during a lockdown in California. “We’re generally used to thinking of humans as the top dog in ecosystems, and the kinds of impacts humans have influence other species and then might ripple beyond to influence the species those species influence,” wildlife ecologist Chris Wilmers told editor Jef Akst. “Now instead of humans being on top, we’ve got the virus that’s on top, changing human behavior, which then influences mountain lions and has the potential to continue to cascade through the food web.”

共有310筆資料 頁數: 第9頁(共16頁)
編號 標題 新增日期
1 美研究:維他命吃過量 恐增罹癌風險 2015.04.22
2 台灣癌症時鐘加快 每5分26秒就1人罹癌 2015.04.17
3 肺癌患者竄升 醫師:空污是主因 2015.04.17
4 PIC/S藥廠淪陷 食藥署將全面稽查 2015.04.03
5 找到治療腸道發炎關鍵 成醫女教授研究登國際期刊 2015.03.31
6 夜視眼藥水 點一滴不摸黑 2015.03.30
7 腸癌年奪5千命 過年「只吃不動」風險高 2015.02.24
8 0.8公分肺部小結節 竟是肺腺癌 2015.02.13
9 《醫學研究》發現長壽基因 「老康健」不是夢 2015.02.13
10 8公斤巨大腎瘤 重如3個新生兒 2015.02.11
11 《愛肝加油站》-脂肪肝可能也會導致肝指數異常 2015.02.09
12 《台大動物實驗》腸內共生菌 可清除B肝病毒 2015.02.04
13 細菌吃掉大半心瓣膜 婦人險送命 2015.01.29
14 中年骨鬆 少菸酒咖啡多補鈣 2015.01.27
15 華人首例卅28歲高胱胺尿症 移植肝重生 2015.01.27
16 Cell:既长寿又健康也许并不难 2015.01.26
17 男子尿尿有屁聲 驚罹大腸癌 2015.01.21
18 喉痛難吞嚥… 食道憩室病變 2015.01.21
19 嘿咻後出血…驚罹子宮頸癌 2015.01.21
20 30年來大突破 新抗生素可殺超級細菌 2015.01.09
上一頁  1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16  下一頁
版權所有©2006 高雄市生物科技發展協會 所有文字、資料禁止轉用
地址:高雄市中正一路120號14樓之3 TEL:(07)591-9569 / FAX:(07)591-9018 / e-mail: khba.tw@gmail.com
累積進站人數:2897497