高雄市生物科技發展協會|http://www.khba.org.tw
會員登入
記住帳號 自動登入
會員名錄
各式辦法
下載專區
留言板
您目前的位置:首頁 / 活動與新訊
Enzyme discovery paves the way for developing universal donor blood
活動日期:2024.06.05
2024.06.05  

Enzyme discovery paves the way for developing universal donor blood

https://www.news-medical.net/news/20240429/Enzyme-discovery-paves-the-way-for-developing-universal-donor-blood.aspx?utm_source=azonetwork_newsletter&utm_medium=email&utm_campaign=biochemistry_newsletter_21_may_2024

Apr 29 2024DTU (Technical University of Denmark)

Researchers at DTU and Lund University have discovered enzymes that remove hindrances that stood in the way of developing universal donor blood.

The quest to develop universal donor blood has taken a decisive step forward. Researchers at DTU and Lund University have discovered enzymes that, when mixed with red blood cells, are able to remove specific sugars that make up the A and B antigens in the human ABO blood groups. The results have been published in the scientific journal Nature Microbiology: https://www.nature.com/articles/s41564-024-01663-4

"For the first time, the new enzyme cocktails not only remove the well-described A and B antigens, but also extended variants previously not recognized as problematic for transfusion safety. We are close to being able to produce universal blood from group B donors, while there is still work to be done to convert the more complex group A blood. Our focus is now to investigate in detail if there are additional obstacles and how we can improve our enzymes to reach the ultimate goal of universal blood production," says Professor Maher Abou Hachem, who is the study leader at DTU and one of the senior scientists behind the discovery.

He states that the discovery is the result of combining the expertise of DTU researchers in enzymes from the human gut microbiota and Lund University researchers in carbohydrate-based blood groups and transfusion medicine.

High demand for donor blood

Human red blood cells carry specific complex sugars structures (antigens) that define the four ABO blood groups A, B, AB and O. These antigens control compatibility between donors and recipients for safe blood transfusion and organ transplantation. Donor blood is screened for disease markers and the main blood groups. It can then be stored refrigerated for up to 42 days.

The need for donor blood is high due to the elderly making up a larger proportion of the population and more patients undergoing blood-intensive medical procedures. Successfully converting A or B blood types into ABO universal donor blood can markedly reduce the logistics and costs currently associated with storing four different blood types. In addition, the development of universal donor blood will lead to an increased supply of donor blood by reducing the waste of blood approaching its expiry date.

The reason why it is necessary to remove the A and B antigens to create universal donor blood is because they can trigger life-threatening immune reactions when transfused into non-matched recipients.

The concept of using enzymes to generate universal donor blood was introduced more than 40 years ago. Since then, higher efficiency enzymes to remove the A and B antigens were discovered, but researchers are still not able to explain or abolish all immune reactions related to the blood, and therefore these enzymes are still not used in clinical practice.

Enzymes from the gut

The research groups from DTU and Lund University have gone new ways to find enzymes that can remove both the A and B blood antigens and the sugars that block them. The research teams discovered new mixtures of enzymes from the human gut bacterium Akkermansia muciniphila that feeds by breaking down the mucus, which covers the surface of the gut. It turns out that these enzymes are exceptionally efficient, as the complex sugars at the surface of the intestinal mucosa share chemical resemblance with those found at the surface of blood cells.

What is special about the mucosa is that bacteria, which are able to live on this material, often have tailor-made enzymes to break down mucosal sugar structures, which include blood group ABO antigens. This hypothesis turned out to be correct."

Professor Maher Abou Hachem, study leader at DTU

Pittcon Highlights: Bioanalytical and Life Sciences eBook Check out the highlights from Pittcon in the Bioanalytical & Life Sciences IndustryDownload the latest edition

The researchers in this study tested 24 enzymes, which they used to process hundreds of blood samples.

"Universal blood will create a more efficient utilization of donor blood, and also avoid giving ABO-mismatched transfusions by mistake, which can otherwise lead to potentially fatal consequences in the recipient. When we can create ABO-universal donor blood, we will simplify the logistics of transporting and administering safe blood products, while at the same time minimizing blood waste" says Professor Martin L. Olsson, the leader of the study at Lund University.

The researchers from DTU and Lund University have applied for a patent on the new enzymes and the method for enzyme treatment and expect to make further progress on this in their new joint project over the next three and a half years. If successful, the concept needs to be tested in controlled patient trials before this can be considered for commercial production and clinical use.

The initial research project is funded by the Independent Research Fund Denmark (Technology and Production Sciences, FTP), the Swedish Research Council, ALF grants from the Swedish government and county councils as well as the Knut and Alice Wallenberg Foundation and Research Fund Denmark, Natural Sciences, FNU), while the new continued project is funded by the Novo Nordisk Foundation, Interdisciplinary Synergy Programme.

Source:

DTU (Technical University of Denmark)

Journal reference:

Jensen, M., et al. (2024). Akkermansia muciniphila exoglycosidases target extended blood group antigens to generate ABO-universal blood. Nature Microbiologydoi.org/10.1038/s41564-024-01663-4.

 

共有314筆資料 頁數: 第7頁(共16頁)
編號 標題 新增日期
1 《醫學研究》免疫系統失衡 長庚研究找出關鍵 2016.11.11
2 懷特 新藥研發一條龍 2016.11.09
3 樹王生技 牛樟芝技術大突破 2016.11.03
4 樟芝菌萃取「安綽醣」 教授獲專利 2016.10.20
5 研究新革命!日本創全球首例 用老鼠iPS細胞培育卵子 2016.10.19
6 生技新藥條例 擴大獎勵 2016.10.17
7 台微體癌症用藥 台美兩地申請臨床試驗 2016.09.02
8 302件新藥試驗 治癌占75% 2016.08.11
9 黃斑部病變合併療法 眼睛少挨好幾針 2016.08.04
10 中原團隊研究證實 靈芝阻止PM2.5從肺部進入血液循環 2016.06.24
11 抗癌藥有望! 國衛院找到全新「癌症抑制基因」DKK2 2016.06.16
12 新藥事法釋利多 造福生技業 2016.02.01
13 藥物試驗出人命 法出現首例 2016.01.19
14 台大、中研院破解細菌存活30億年之謎 2015.12.18
15 以價制量 高藥價時代來臨 2015.11.23
16 懷特新藥PG2 驚豔國際 2015.11.04
17 生技藥品主導 醫藥創新世代來臨 2015.10.13
18 浩鼎新藥授權 入帳近億 2015.10.05
19 整合健康科技產業投資說明會 (2015年10月15日(星期四)/10:00AM.. 2015.10.02
20 癌症治療新趨勢 餓死癌細胞 2015.10.02
上一頁  1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16  下一頁
版權所有©2006 高雄市生物科技發展協會 所有文字、資料禁止轉用
地址:高雄市中正一路120號14樓之3 TEL:(07)591-9569 / FAX:(07)591-9018 / e-mail: khba.tw@gmail.com
累積進站人數:3123236