高雄市生物科技發展協會|http://www.khba.org.tw
會員登入
記住帳號 自動登入
會員名錄
各式辦法
下載專區
留言板
您目前的位置:首頁 / 活動與新訊
New nanocapsule treatment boosts immune response against solid tumors
活動日期:2023.11.01
2023.11.01  

New nanocapsule treatment boosts immune response against solid tumors

https://www.news-medical.net/news/20231011/New-nanocapsule-treatment-boosts-immune-response-against-solid-tumors.aspx?utm_source=news_medical_newsletter&utm_medium=email&utm_campaign=breast_cancer_newsletter_16_october_2023

Reviewed by Oct 11 2023

UCLA researchers have developed a new treatment method using a tiny nanocapsule to help boost the immune response, making it easier for the immune system to fight and kill solid tumors.

The investigators found the approach, described in the journal Science Translational Medicine, increased the number and activity of immune cells that attack the cancer, making cancer immunotherapies work better.

Cancer immunotherapy has reshaped the landscape of cancer treatment. However, not all patients with solid tumors respond well to immunotherapy, and the reason seems to be related to the way the cancer cells affect their surroundings."

Jing Wen, senior author of the study, assistant adjunct professor of microbiology, immunology, & molecular genetics at the David Geffen School of Medicine at UCLA and a scientist at the UCLA Jonsson Comprehensive Cancer Center

Cancer cells produce a lot of lactate, Wen explained, which creates an environment around the solid tumor that makes it difficult for the immune system to work effectively against the cancer.

Although there have been efforts to reduce the levels of lactate with different drug inhibitors, these methods tend to also disrupt the metabolism of healthy cells, which can cause severe side effects.

To find a way to alleviate immune dysfunction around the tumor without hurting healthy cells, Wen and the team looked to create a tool to deliver drug inhibitors directly, to degrade lactate around and within solid tumors.

To achieve that goal, the team developed a treatment encapsulating an enzyme called lactate oxidase into a tiny nanocapsule that reduces lactate levels and releases hydrogen peroxide in the tumor.

Decreased levels of lactate are beneficial for releasing the suppression of immune response, while increased levels of hydrogen peroxide, a substance typically produced when you get injured, help recruit and activate immune cells in the tumors.

Biotechnology eBook Compilation of the top interviews, articles, and news in the last year.Download the latest edition

"When lactate is reduced and hydrogen peroxide is released, it makes it easier for the immune system to work against the cancer," said Zheng Cao, first author of the study and UCLA Samueli School of Engineering doctoral candidate in the department of chemical and biomolecular engineering.

To examine the effect of nanocapsules with the lactate oxidase enzyme, the team tested the approach in mice with melanoma and triple-negative breast cancer and performed tumor growth measurement, survival curve analysis, RNA sequencing, and immune cell population analysis. The team found that reducing lactate and producing hydrogen peroxide encouraged immune cells to enter the tumor, increasing the number and activity of immune cells that attack the cancer by 2 to 5-fold.

"We found lactate oxidase nanocapsules helped prevent the immune system from being weakened and overcome the immune suppression caused by the tumor," Cao said. "Moreover, this dual-action approach improved the success of a specific type of cancer immunotherapy treatment called immune checkpoint blockade and we believe it could be an effective strategy to help make cancer immunotherapy more effective."

The researchers will further explore the impact of lactate oxidate nanocapsules on enhancing the therapeutic effectiveness of chimeric antigen receptor (CAR) T-cell therapy for solid tumors. CAR T-cell therapy is a type of cellular immunotherapy designed to modify T cells, enabling them to recognize and attack cancer.

Along with Wen, the study's senior authors are Jimin Guo, a former postdoc scholar in the department of microbiology, immunology, & molecular genetics; and Yunfeng Lu, professor emeritus of chemical and biomolecular engineering at UCLA engineering.

This work was supported in part by grants from the UCLA ENN Center for Nanomedicine and Energy Conversion, the National Institutes of Health, and the National Center for Advancing Translational Science.

Source:

University of California - Los Angeles Health Sciences

Journal reference:

Cao, Z., et al. (2023) Lactate oxidase nanocapsules boost T cell immunity and efficacy of cancer immunotherapy. Science Translational Medicine. doi.org/10.1126/scitranslmed.add2712.

共有310筆資料 頁數: 第12頁(共16頁)
編號 標題 新增日期
1 謹訂於10月18日(四)舉辦「2012臺北生技獎醫療器材得獎廠商參訪.. 2012.10.15
2 癌症與細菌之間關係研究的最新報導 2012.09.19
3 7月26日「2012臺北生技大師圓桌論壇」 2012.07.04
4 2012台北生技獎徵選開跑 2012.05.29
5 自由電子報 -〈醫學研究〉興大發現酵素FAK 調控癌細胞轉移的關鍵 2012.05.25
6 2012台北生技獎暨生技研發補助說明會 2012.04.23
7 治禿福音 日本幹細胞育毛成功 (自由電子報) 2012.04.19
8 自由電子報 - 萬用癌症疫苗 最快6年內問世 2012.04.09
9 企業結盟- 明文彥&益全&豐禾 2012.04.03
10 2008 RFID應用推動研討會 2008.11.17
11 國科會生物處業務說明暨座談會 2008.10.01
12 藥事論壇講座(第三十屆)『新興製藥技術產品及藥品不純物業界說.. 2008.09.26
13 2008東南亞市場-泰國、馬來西亞拓商 2008.09.18
14 生技研發服務平台發表會 2008.09.17
15 2008國際抗癌藥物技術媒介會 2008.09.16
16 2008台北生技獎頒獎典禮暨成果發表會 2008.09.11
17 台灣疫苗產業政策及發展現況 研討會 2008.08.25
18 機電醫療器材研討會–從產品研發到上市法規 2008.09.03
19 「蛋白質藥物修飾技術發展趨勢」研討會 2008.08.20
20 「腫瘤藥物劑型技術發展趨勢與策略」研討會 2008.08.15
上一頁  1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16  下一頁
版權所有©2006 高雄市生物科技發展協會 所有文字、資料禁止轉用
地址:高雄市中正一路120號14樓之3 TEL:(07)591-9569 / FAX:(07)591-9018 / e-mail: khba.tw@gmail.com
累積進站人數:2897578